El fenómenos de las mareas (2022)

En esta página, se explicará el origen de las mareas. Veremos que los fundamentos físicos son simples pero el análisis cuantitativo es bastante complejo.

En esta página, no se explican los efectos dinámicos que sobre el océano tiene una fuerza que varía con el tiempo. Solamente, se explicará el origen y las propiedades de las fuerzas de marea.

El problema que se va a resolver, es el de encontrar la forma que adopta la superficie libre de una capa de agua que cubre toda la Tierra, cuando consideramos las fuerzas de atracción que ejerce el Sol y la Luna

El origen de las fuerzas de marea

El origen de las fuerza de marea se debe a que la Tierra es un cuerpo extenso y el campo gravitatorio producido por la Luna o por el Sol no es homogéneo en todos sus puntos, ya que hay unos puntos que están más cercanos y otros más alejados de dichos cuerpos celestes.

Supondremos que la Tierra es un cuerpo rígido de forma esférica de radio R, que está cubierta por una capa de agua de espesor uniforme y de pequeña profundidad. El cuerpo perturbador, la Luna o el Sol se supone que está en el plano ecuatorial de la Tierra

Aunque el Sol y la Luna se mueven, se considera que el agua está en todo momento en equilibrio, la velocidad y la aceleración de cualquier elemento de líquido respecto de la Tierra se supone despreciable.

Supondremos inicialmente, que el cuerpo perturbador es la Luna, las mismas fórmulas serán aplicables para el Sol. Finalmente, analizaremos el efecto combinado de la Luna y del Sol.

Consideremos la Tierra y la Luna inmóviles en el espacio estando sus centros separados una distancia r. La fuerza de marea, en una determinada posición P de la superficie de la Tierra, es igual a la diferencia entre la fuerza de atracción que la Luna ejerce sobre un objeto situado en dicha posición, y la fuerza de atracción que ejercería sobre tal objeto si estuviese en el centro de la Tierra.

El fenómenos de las mareas (1)

Dibujamos las fuerzas de atracción que ejerce la Luna (en color rojo) sobre un objeto de masa m situado en los puntos A, B y C, y la fuerza que ejercería (en color azul) sobre dicho objeto si estuviese situado en el centro T de la Tierra. A la derecha, se dibujan las fuerzas de marea (diferencia entre los vectores rojos y azul) en los puntos A, B y C.

En el centro de la Tierra T, la fuerza de atracción está dirigida hacia el centro de la Luna

El fenómenos de las mareas (2)

  • En A, la fuerza de atracción que ejerce la Luna sobre un objeto de masa m es

El fenómenos de las mareas (3)

y la fuerza de marea fA en dicho punto es

El fenómenos de las mareas (4)

Se ha hecho la aproximación R<<r, el radio de la Tierra R=6.37·106 m es mucho menor que la distancia entre el centro de la Tierra y el centro de la Luna r=384.4·106 m

  • En B, la fuerza de marea fB es

El fenómenos de las mareas (5)

  • En C, la fuerza de atracción es

El fenómenos de las mareas (6)

Teniendo en cuanta que el ángulo φ es muy pequeño, tan φ=R/r, con R=6.37·106 m, y r=384.4·106 m, φ=0.017 rad. Por lo que cos φ≈1, y sen φ≈tan φ=R/r

El fenómenos de las mareas (7)

Las fuerzas de marea en las posiciones A y B, en la línea que une la Luna y la Tierra son aproximadamente el doble en módulo, que en la posición C, perpendicular a dicha línea.

  • En P, la fuerza de marea es.

El fenómenos de las mareas (8)

La fuerza que ejerce la Luna sobre un objeto de masa m situado en el punto P distante rP del centro de la Luna será

El fenómenos de las mareas (9)

y está dirigida según la línea que une el punto P con el centro de la Luna

La fuerza de marea en P es la diferencia entre los vectores fP=FP-FT. Sea

El fenómenos de las mareas (10)
  • rP el vector con origen en el centro de la Luna y extremo en P

  • r es el vector con origen en la Luna y extremo en el centro de la Tierra

  • R el vector con origen en la Tierra y extremo en el punto P

rP =r+R

El fenómenos de las mareas (11)

El fenómenos de las mareas (12)

El fenómenos de las mareas (13)

  • Para θ=0, los vectores r y R tienen la misma dirección y sentido, obtenemos fB (véase la primer figura)

  • Para θ=π/2 los vectores r y R son perpendiculares, el producto escalar es cero, obtenemos fC

  • Para θ=π, los vectores r y R tienen la misma dirección y pero sentido opuesto, obtenemos fA.

Como apreciamos en la figura, solamente tenemos que calcular las fuerzas de marea en la mitad de la Tierra por encima del eje que une el centro de la Tierra y el centro de la Luna. Los puntos de la Tierra simétricos, por debajo de dicho eje, tienen fuerzas de marea iguales y de sentido contrario.

Componentes de la fuerza de marea.

Para calcular la componente radial de la fuerza de marea, hacemos el producto escalar fP·R=fR·R, donde fR es la componente radial de la fuerza de marea

El fenómenos de las mareas (14)

La componente tangencial ft se calcula mediante el módulo del producto vectorial |fPxR|=ft·R

El fenómenos de las mareas (15)

  • La componente tangencial es cero, para θ=0, punto B, θ=90º punto C, θ=180º punto A.

  • La componente radial es máxima, para θ=0, punto B, θ=180º punto A. Es mínima, para θ=90º, punto C.

Datos

  • Masa de la Luna M=7.35·1022 kg

  • Distancia media entre el centro de la Tierra y el centro de la Luna r=384.4·106 m

  • Masa del Sol M=1.98·1030 kg

  • Distancia media entre el centro de la Tierra y el centro del Sol r=149.6·109 m

  • Radio de la Tierra R=6.37·106 m

  • Constante G=6.67·10-11 Nm2/kg2

La fuerza de atracción que ejerce la Tierra sobre un objeto de masa m situado en su superficie es

El fenómenos de las mareas (16)

El Sol está muy alejado de la Tierra, pero tiene una masa enorme. La Luna está cercana a la Tierra pero su masa es relativamente pequeña. La fuerza de atracción que ejerce el Sol sobre el c.m. de la Tierra es mayor que la fuerza que ejerce la Luna sobre el c.m. de la Tierra.

El fenómenos de las mareas (17)

El fenómenos de las mareas (18)

El cociente es FS/FL=178

Estimados el valor máximo de las fuerzas de marea en A o B (θ=0), véase la primera figura

  • Debidas a la Luna

El fenómenos de las mareas (19)

  • Debidas al Sol

El fenómenos de las mareas (20)

El cociente entre estas dos fuerzas es fL/fS=2.195

Estas cifras nos indican que, las fuerzas de marea son muy pequeñas comparadas con la fuerza de atracción de la Tierra 9.83·m sobre un objeto de masa m situado en su superficie, pero sus efectos son notables.

La fuerza de atracción del Sol sobre el c.m. de la Tierra es mayor que la fuerza de atracción de la Luna, a pesar de que ésta está muy próxima a la Tierra. Sin embargo, la fuerza de marea producida por el Sol es más pequeña que la producida por la Luna.

Elevación de la capa de agua

El siguiente paso, cuya demostración se omite, por razones de dificultad matemática, pero que puede consultarse en el primer artículo citado en las referencias, es el cálculo de la energía potencial correspondiente a la fuerza de marea fP.

La forma S0 de la superficie debido a la fuerza de atracción de la Tierra y a su rotación es la de un esferoide de revolución alrededor del eje polar.

La fuerza centrípeta, debida a la rotación de la Tierra alrededor de su eje, que es una fuerza independiente del tiempo, no añade nada a las fuerzas de marea.

El fenómenos de las mareas (21) El efecto del cuerpo perturbador (Sol, Luna o ambos) es el distorsionar ligeramente la superficie S0, para dar lugar a una nueva superficie S,donde S es una superficie equipotencial perpendicular a la resultante de todas las fuerzas, incluidas las de marea, que actúan en P.

Teniendo en cuenta, que el volumen de agua que cubre la Tierra permanece constante, se determina la elevación h del punto P de la superficie S0 debida exclusivamente a las fuerzas de atracción del cuerpo perturbador.

El fenómenos de las mareas (22)

donde M es la masa del cuerpo perturbador, MT=5.98·1024 kg es la masa de la Tierra, R su radio, r la distancia entre el centro de la Tierra y el centro del cuerpo perturbador.

Esta es la expresión que emplearemos en los programas interactivos al final de esta página, donde hemos supuesto que el cuerpo perturbador está en reposo en el plano ecuatorial de la Tierra a una distancia r de su centro.

La máxima elevación corresponde al ángulo θ=0º o θ=π, cuando el cuerpo perturbador está delante o detrás, (puntos A y B de la primera figura) donde son máximas las fuerzas de marea.

La mínima elevación corresponde al ángulo θ=π/2, (punto C de la primera figura). La máxima elevación es el doble en valor absoluto, de la mínima elevación. De modo que, la diferencia entre altura máxima de la bajamar y la pleamar es

El fenómenos de las mareas (23)

Con los datos proporcionados en el apartado anterior. Para las mareas producidas por la Luna

El fenómenos de las mareas (24)

Para las mareas producidas por el Sol

El fenómenos de las mareas (25)

Rotación de la Tierra

Ahora bien, esta no es la situación real. La Tierra se mueve respecto de su eje con un periodo de 24 h 22 min. La velocidad angular de rotación es ω=2π/P.

La elevación en función de la latitud

El fenómenos de las mareas (26)

Supongamos que en el instante t=0, el punto P sobre la superficie de la Tierra a una latitud λ, y el cuerpo perturbador M están en el plano XZ. Al cabo de un cierto tiempo t, debido a la rotación de la Tierra, el punto P se habrá desplazado a la posición P’, el ángulo OPP' es ωt

El ángulo θ, formado por la recta que une el centro de la Tierra con el punto P' y el centro de la Tierra con el centro del cuerpo perturbador o bien, por el vector R y el vector r, se puede calcular por medio del producto escalar.

r=ri
R
=Rcosλ·cos(ωti+ Rcosλ·sen(ωtj+Rsenλ·k

El producto escalar vale

r·R=R·rcosθ=R·rcosλcos(ωt)

cosθ=cosλ·cos(ωt)

La elevación en función de la latitud y el ángulo de declinación

Si el cuerpo perturbador no está en el plano ecuatorial, sino que forma un ángulo δ, de declinación con dicho plano.

El fenómenos de las mareas (27)

El vector r se escribe ahora

r=rcosδ·i+rsenδ·k

El producto escalar vale

r·R=R·rcosθ=R·rcosλ cos(ωt) cosδ+ Rrsenλ rsenδ

cosθ=cosλ cos(ωt) cosδ+senλ rsenδ

Finalmente, si P no parte del plano XZ (meridiano de Greenwich) sino de una meridiano inicial φ. La fórmula se convierte en

cosθ=cosλ cos(ωt+φ) cosδ+senλ rsenδ

Introduciendo cosθ en la expresión de la elevación del agua, y teniendo en cuenta las identidades trigonométricas cos2β=2cos2β-1,sen2β+cos2β=1, sen2β =2senβcosβ, se llega al siguiente resultado.

El fenómenos de las mareas (28)

  • El primer sumando, depende armónicamente de ωt, y completa un periodo de oscilación cuando ωt=2π, es decir, cuando la Tierra da una vuelta completa. Estas son las mareas diurnas, lunares o solares según que M y r sean, respectivamente, los datos de la masa de la Luna y su distancia al centro del la Tierra, o los datos relativos al Sol.

En el ecuador estas mareas desaparecen ya que la latitud λ=0. En cambio, se hacen grandes para latitudes de λ=45º.

  • El segundo sumando, depende armónicamente de 2ωt, por tanto, cada 12 horas se produce un ciclo de marea. Su amplitud se hace nula en los polos λ=90º, y son máximas en el ecuador λ=0º.

  • El tercer sumando, no depende del tiempo, y se anula para aquellas latitudes tales que sen2λ=1/3, λ35º, y tiene su máximo valor en los polos. Finalmente, depende del ángulo de declinación δ que a su vez depende del movimiento de la Luna y del Sol.

Mareas producidas por el Sol y la Luna

Cuando consideramos los efectos combinado de la de la Luna y del Sol, la elevación de la marea se obtiene sumando las elevaciones debidas cada uno de ellos.

El fenómenos de las mareas (29)

La máxima diferencia de nivel entre la marea baja y pleamar es de 53.4+24.4=77.8 cm. Cuando los dos cuerpos celestes están en conjunción alineados con la Tierra se producen la máxima elevación, y cuando están en cuadratura se producen la mínima elevación.

Oscilaciones forzadas

La descripción de las mareas que se ha hecho en los apartados anteriores corresponde al efecto de la Luna y del Sol sobre una capa de agua de espesor uniforme que cubre la Tierra por completo. La Tierra está cubierta de agua en sus tres cuartas partes, y su distribución no es uniforme, tanto en profundidad como en extensión. Tenemos grandes océanos, mares cerrados como el Mediterráneo, lagos, bahías, etc. La diferencia de nivel entre la marea baja y la alta cambia de un lugar a otro, así en el mar Mediterráneo es muy pequeña, y en ciertas bahías como la de Fundy en Canadá es muy grande

Resonancia

Hemos observado, que un punto de la superficie líquida de la Tierra está sometido a una fuerza oscilante, cuyo periodo es de 12 horas aproximadamente, y cuya amplitud es variable. Una bahía es una cavidad con determinados modos de oscilación, que dependen de su forma, extensión y profundidad de sus aguas. En ciertos lugares como Mont St Michel en la Bretaña francesa o la bahía de Fundy en Canadá se pueden producir situaciones de resonancia, con una diferencia de altura entre el flujo y el reflujo que van desde los 15 metros en la localidad francesa a 20 m en la bahía de Canadá.

Efecto sobre la rotación de los cuerpos

El efecto de las mareas es una disminución progresiva en la velocidad de rotación de la Tierra. La duración del día se incrementa en 3.5 milisegundos por cada siglo.

Si consideramos que la Luna tuvo alguna vez en su historia remota una parte fluida, los efectos de marea provocados por la acción de la Tierra fueron enormes. Se puede hacer un cálculo y mostrar que estos son 6000 veces mayores que los que produce la Luna en la Tierra. El efecto de estas intensísimas mareas explica el hecho de que siempre vemos la misma cara de la Luna.

Venus que está mucho más cerca del Sol, tiene una baja velocidad de rotación, la duración de un día venusiano es de 243.16 días terrestres, el año venusiano consta aproximadamente de dos días solares.

No se pueden explicar ciertos movimientos de planetas y satélites sin recurrir al mecanismo de fricción de marea.

Actividades

Sistema inmóvil Tierra - Luna o Tierra – Sol.

En el primer applet comparamos los "efectos de marea" sobre la Tierra producidos separadamente por la Luna y por el Sol. Se supone que la Luna y el Sol están a una distancia fija de la Tierra, en su plano ecuatorial, y que ésta no tiene movimiento de rotación.

  • Se activa el botón titulado Luna,
  • Se pulsa el botón titulado Nuevo

Si se activa la casilla titulada Fuerzas, se observa las componentes tangencial y radial de las fuerza de marea que se ejercen en varios puntos de la superficie terrestre.

  • Se activa el botón titulado Sol,
  • Se pulsa el botón titulado Nuevo

La superficie de agua se desvía de la forma esférica y esta desviación como puede apreciarse, no está realizada a escala.

De la representación gráfica sacamos las siguientes conclusiones

  1. Los valores máximos (positivos) apareen en la zona de la superficie de la Tierra más cercana a la Luna (q =0º) y en la zona más alejada (q =180º). En estas zonas los cuerpos pesan menos, la superficie del agua se eleva.
  2. Los valores mínimos (negativos) se producen en las zonas intermedias (q =90º) y (q =270º), en estas zonas los cuerpos pesan más, la superficie del agua se hunde.
  3. Fijarse que la interacción gravitatoria disminuye con el cuadrado de la distancia a pesar de la enorme masa del Sol sus efectos sobre el nivel de las aguas es mucho menor que la producida por la Luna. El efecto del Sol es algo menos de la mitad que el producido por la Luna.

You might also like

Latest Posts

Article information

Author: Jonah Leffler

Last Updated: 08/30/2022

Views: 5698

Rating: 4.4 / 5 (45 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Jonah Leffler

Birthday: 1997-10-27

Address: 8987 Kieth Ports, Luettgenland, CT 54657-9808

Phone: +2611128251586

Job: Mining Supervisor

Hobby: Worldbuilding, Electronics, Amateur radio, Skiing, Cycling, Jogging, Taxidermy

Introduction: My name is Jonah Leffler, I am a determined, faithful, outstanding, inexpensive, cheerful, determined, smiling person who loves writing and wants to share my knowledge and understanding with you.